
Sequential Frequent Patterns for a DNA
Sequence Using Mapping and Mining Techniques

Luis Heriberto Garcı́a-Islas, Anilu Franco-Arcega, Vı́ctor Ignacio Sobrevilla-Solı́s,
Esteban Rueda-Soriano, Kristell Daniella Franco-Sánchez

Universidad Autónoma del Estado de Hidalgo,
Instituto de Ciencias Básicas e Ingenierı́a,

Área Académica de Computación y Electrónica,
Mexico

{luishg, afranco, so314246, estebanrs, kristell franco}@uaeh.edu.mx

Abstract. Biological sequences contain a significant amount of genetic
information from living organisms. The analysis of these sequences can provide
information that might help biologists better understand them. The discovery of
frequent patterns from a specific DNA sequence has become one of the greatest
challenges in the application of data mining techniques. This is especially true
for those sequences whose length is extensive and/or the number of frequent
patterns generated exceeds the time needed to fully reveal themselves. There is a
considerable time and effort for obtaining sequential frequent patterns when the
methods utilized are based on Apriori algorithms such as GSP or Key-segment.
However, these methods can be enhanced and improved. In this paper, we
propose a sequence mapping-based algorithm designed to improve the search
for contiguous frequent patterns in a single DNA sequence. Our experiment was
applied over 11,230 DNA real different sequences with lengths between 118 and
52,255 nucleotides, obtained from a real biological database. This experiment
demonstrated a faster algorithm for frequent pattern mining on DNA sequences
compared with other related algorithms.

Keywords: Data mining, sequential pattern mining, frequent contiguous
patterns, DNA sequences, bioinformatics.

1 Introduction

Large DNA sequences are often composed of several short frequent subsequences that
play important functional or structural roles in a living organism [17]. One way to study
this is through Frequent Pattern matching [1], which has become a relevant area of
research for bioinformatics [4-8, 12, 13, 19-22]. Even though in recent years, several
approaches to identify frequent patterns on sequences have been proposed [2, 14], some
of them must scan the sequence multiple times to obtain even only the subsequences
frequency, which increases the computational effort to read the sequences.

To reduce this complexity, other algorithms perform non-exhaustive searches
because they are only able to find fixed-length frequent patterns [9, 15]. However,
there is no guarantee that major additional relevant frequent patterns can be found.

45

ISSN 1870-4069

Research in Computing Science 151(10), 2022pp. 45–53; rec. 2022-06-13; acc. 2022-08-12



Fig. 1. General approach for proposed frequent pattern algorithm.

Finally, some algorithms can only validate whether a subsequence is a frequent pattern
or not [10].

For the algorithms that perform exhaustive searches, there are the classic algorithms
such as PrefixSpan, Spade, SPAM, and GSP [2] which perform searches using
algorithms such as Naive, KMP or Boyer Moore [11]. New approaches have appeared
and demonstrate better performance than classic algorithms, such as Key-segment
introduced by Mao [14], which allows the use of a compact data structure to be retained
in memory resulting from sequences scanning.

The Mao’s algorithm is based on GSP [3] and is used to mine key segments from long
DNA sequences. This method uses an exhaustive search to identify frequent patterns,
thus the results are more effective than more classic techniques. However, this operation
still consumes considerable time to perform its analysis since the sequence must be
scanned every time in accordance with the number of occurrences in order to obtain
each frequent subsequence.

Despite several researches design to determine frequent patterns, using enhanced
algorithms to determine variable length frequent DNA sequence patterns, a significant
challenge remains. In this paper, we present an algorithm where the frequent subsequent
nucleotide sequences can be identified within a single DNA sequence using a novel
mapping technique.

Obtaining these kind of patterns in a single DNA sequence is important because it
can establish the basis for discovering more complex behaviors, such as motifs. The
most frequent subsequence patterns with variable length will result as output for this

46

Luis Heriberto García-Islas, Anilu Franco-Arcega, et al.

Research in Computing Science 151(10), 2022 ISSN 1870-4069



Algorithm 1 Map generation
INPUT: sequence - sequence to be mapped
OUTPUT: map - the obtained map

1: function GENERATEMAP(sequence)
2: for each nucleotide in sequence do
3: map[char][lastItem]← [Pos, nextChar]
4: end for

return map
5: end function

proposed method. The emphasis on finding repeated nucleotide subsequences with
different sizes promises to have a significant and positive impact in many fields of
genetics and bioinformatics.

The remainder of the paper is organized as follows. Section 2 introduces the proposed
algorithm and describes in detail each stage. The experimental results and a comparison
with other related algorithms are discussed in section 3. Finally, in section 4 conclusions
are presented.

2 Proposed Algorithm

To identify frequent patterns in a single DNA sequence, the proposed algorithm is
formed by three stages: sequence mapping, candidate subsequences generation and the
assessment for those candidate subsequences. Figure 1 presents these stages. The first
stage creates a map from the sequence that can be utilized to perform a fast search to
obtain frequencies of subsequences.

Then, the stages that follow will iterate the frequent patterns. In these iterations, the
generation of candidates is performed (stage 2), and the process follows by obtaining
their number of occurrences (stage 3). During these iterations, all those candidate
subsequences whose occurrence numbers are greater or equal to an established
threshold will be used as a source to create new candidate subsequences.

Stages 2 and 3 will be iterated until the number of candidates, that fulfill the threshold
condition, becomes zero.

2.1 Sequence Mapping

As part of the proposed process, the first step consists of transforming the DNA
sequence into a map represented as a table. In this tabular abstraction, the rows represent
each different element in the sequence, i.e. a row for each nucleotide (A, C, G, T).

Every row stores a set of pairs formed as following: (Pos, nextChar), where Pos
represents the position of the nucleotide within the sequence and nextChar represents
the next element. The Algorithm 1 shows the process of creating the map.

The resulting map will be used to obtain the frequency for every possible candidate
that will be generated in next stage.

47

Sequential Frequent Patterns for a DNA Sequence Using Mapping and Mining Techniques

Research in Computing Science 151(10), 2022ISSN 1870-4069



Algorithm 2 Candidate generation
INPUT: CandidateSubsequences - the set of candidates that will be used as base to generate
new ones
OUTPUT: NewCandidates - the obtained new candidates

1: function GENERATECANDIDATES(CandidateSubsequences)
2: alphabet← [A,C,G, T ]
3: for each CandidateSubsequence do
4: for each letter in alphabet do
5: NewCandidate← CandidateSubsequence + letter
6: if NewCandidate[2:length(NewCandidate)] exists in CandidateSubsequences

then
7: NewCandidates⇒ append(NewCandidate)
8: end if
9: end for

10: end for
return NewCandidates

11: end function

2.2 Candidate Subsequence Generation

This stage is performed in two steps: the initial stage and the followed by iterative
candidate generation. The first occurs right after stage 1 is concluded and requires the
initial candidate generation, which consists of creating 24 2-length candidates by using
the nucleotides alphabet.

The second will be an iterative process. For each iteration i, the generation process
uses the n-length survivor candidates of iteration i-1, which are obtained in stage 3, in
order to create new ones.

For each survivor candidate, this step will generate (i+1)-length possible
new candidates by adding all of the chars from the alphabet, to each one,
i.e. if ”AA” is a survivor candidate, four new candidates will be created as
{”AAA”,”AAC”,”AAG”,”AAT”}. Then, every possible new candidate will be evaluated
by using anti-monotone property of support [18] which is applied to avoid generating
unnecessary candidates.

The process of generating subsequence candidates can be observed in Algorithm 2.

2.3 Candidate Subsequence Assessment

Once all new candidates have been created, the next stage will consist of the
candidate subsequences assessment. To perform this, a novel approach for obtaining
their frequency is proposed. This can be observed in Algorithm 3 where a process
is employed to locate all pairs (pos, nextChar) in the map, traveling the row
corresponding with every char from candidate subsequence to calculate how many
times they appear in the sequence.

This number will represent the number of occurrences, i.e. the frequency for each
candidate subsequence. Then, the next step is to create the set of survivor candidates to
be used in the next iteration. A candidate survives if fsupport(candidate sequence) ≥
Threshold. When this set is empty, the algorithm has completed its cycle.

48

Luis Heriberto García-Islas, Anilu Franco-Arcega, et al.

Research in Computing Science 151(10), 2022 ISSN 1870-4069



Fig. 2. Sequence length and number of obtained contiguous patterns.

3 Experiments and Performance Evaluation

Some experiments are shown to validate the performance of the proposed algorithm.
The algorithm was tested over 11,230 sequences of different lengths between 118
and 52,255 nucleotides from 550 organisms, for example Chikungunya virus, Cactus,
Xenopus laevis, among others. These sequences were downloaded from the NCBI
repository [16].

We compared our proposal with algorithms based on Apriori using different search
methods (Naive, KMP and Boyer-Moore), and with key-segment algorithm. The reason
to use these algorithms is because they can be used to obtain frequent patterns contained
in only one sequence, unlike other algorithms, such as fp-tree based algorithms that
requires a set of sequences to obtain frequent patterns. All of the algorithms were
programmed with Python 2.7 and for these experiments it was considered the threshold
with a value of 2, because it obtains the whole set of frequent patterns. If the threshold
increases his value then the length of the set of frequent patterns will be decreased.

The experimental results show that the proposed algorithm obtained the same amount
of patterns than Apriori-KMP, Apriori-Boyer Moore and Key-segments for the 100% of
the tested sequences as it can be seen on Figure 2. In particular, Apriori-Naive obtains
less frequent patterns than the other algorithms. The reason of this is because it doesn’t
consider when patterns with same nucleotides appears on contiguous elements, i.e.
pattern ”AA” on sequence ”AAATC”, for Naive algorithm, has a frequency of one
instead of two.

The efficacy of the proposed algorithm resides in the identification and utilization
of a novel method to obtain frequent patterns via a structured mapping search, which
consumes less processing time than related algorithms.

The number of patterns for all cases is the same, except for Apriori-Naive but, the
major difference is in the processing time needed to obtain them. Table 1 indicates the
processing time required by the tested algorithms, our proposed algorithm evidenced
the fastest processing times. In the longest sequence tested, there were significant

49

Sequential Frequent Patterns for a DNA Sequence Using Mapping and Mining Techniques

Research in Computing Science 151(10), 2022ISSN 1870-4069



Algorithm 3 Frequency obtaining
INPUT:

– pattern: whose frequency will be obtained.
– StartPosition: allows the method to find the path of search on a defined position of the

pattern.
– positionsArray: enables an positions array whose sequence[pos] are part of the pattern

OUTPUT: length(pos) is the obtained frequency of the candidate to be assessed and pos is the
array containing the positions of the substrings corresponding with the assessed pattern

1: function GETFREQUENCY(pattern, startPosition, positionsArray)
2: frequency← 0
3: posAnt← empty ▷ Represents the array of positions of the previous iteration whose

sequence[Pos] are part of the pattern
4: pos← empty ▷ Represents the array of positions on the current iteration whose

sequence[pos] are part of the pattern
5: if length(pos) > 0 then ▷ this initial iteration allows identify which positions in the

selected row fits with the input pattern
6: currentChar← pattern[0]
7: nextChar← pattern[1]
8: row← row of currentChar in map
9: pos← row[x][1]∀x[2] = pattern[2] ▷ Gets all the pairs[pos,nextChar] whose

nextChar=pattern[1]
10: indexPattern← 2
11: else ▷ There is a sub pattern and it will be used as an start to complement
12: pos← positionsArray
13: indexPattern = startPosition− 1
14: end if
15: while length(pos) > 0 do
16: newPos← empty ▷ Represents the positions identified whose sequence[pos] are

part of the pattern
17: for each position in pos do
18: if [position+1,pattern[indexPattern] exists in map[row] then
19: newPos→ append(position)
20: end if
21: end for
22: pos← newPos
23: indexPattern← indexPattern + 1
24: end while

return length(pos), pos
25: end function

improvements in the processing of 42.7, 46.9, 22.7 and 53.3 times faster compared with
Apriori-Naive, Apriori-KMP, Apriori-Boyer Moore and Key Segments, respectively.

The execution time for all the algorithms with the complete set of sequences is
exhibited in Figure 3. The average process improvement times of our algorithm were
46.16, 43.75, 24.95 and 39.16 over Apriori-Naive, Apriori-KMP, Apriori-Boyer Moore
and Key-segments, respectively.

50

Luis Heriberto García-Islas, Anilu Franco-Arcega, et al.

Research in Computing Science 151(10), 2022 ISSN 1870-4069



Fig. 3. Processing time to obtain frequent patterns for different length sequences.

As we can see in the previous figure, the maximum improvement for each algorithm
was of 59.59, 72.24, 41.34 and 98.53 (on the same order of algorithms). This indicates
a significant enhancement when the proposed algorithm is applied. Furthermore, the
behavior for the other algorithms presents an irregular increment in execution time for
several sequences.

This behavior is related to the number of patterns that a sequence contains combined
with its length, as indicated in Table 1. This table only shows a summary of the whole
set of experiments performed, there are 14 of 11,230 executions. The summary of Table
1 demonstrates that while larger is the length of the DNA sequence more execution time
requires to complete the discovery of patterns.

The proposed algorithm presents a minimum variation of the execution time even
when these cases are processed. This means that execution time for our algorithm is
not related to the number of patterns but to the sequence length, while the time for
the comparison algorithms is associated with both, the length and number of patterns
contained in the sequence.

4 Conclusions

In this paper, a novel algorithm to improve frequent pattern generation for a single DNA
sequence is proposed. Greater speed and efficacy are obtained through transformation
of the sequence by way of a map, and then applying the map in combination with the
well known anti-monotone property of support to obtain these frequent patterns.

In addition, a new way to search the number of occurrences for a subsequence
using the created map is proposed. Such map is obtained by scanning the entire DNA
sequence only once with the application of the algorithm.

Then, it allows the identification of the number of occurrences of a subsequence
into a DNA sequence using the improved proposed search, avoiding the need to scan
the entire sequence and even the entire subsequence every time it is evaluated. In
addition, the use of the anti-monotone property reduces the number of possible frequent
subsequence candidates and hence, the number of iterations.

51

Sequential Frequent Patterns for a DNA Sequence Using Mapping and Mining Techniques

Research in Computing Science 151(10), 2022ISSN 1870-4069



Table 1. Summary of execution time obtained through experimental results with different lengths
DNA sequences, in seconds.

Sequence ID length Apriori- Apriori Apriori- Key ProposedNaive KMP BoyerMoore Segment
HL714398 118 0.0159 0.0150 0.0160 0.0160 0.0016
NM 007169 1008 1.0160 0.8910 0.5779 0.6099 0.0460
NM 053477 2020 4.0900 3.5320 2.2260 2.6570 0.1719
NM 001322998 3000 9.2190 8.1139 4.8289 5.7829 0.3280
NM 022009 4071 11.4390 0.5160 16.7109 14.4429 8.6890
XM 011544263 5103 25.2250 22.9159 13.6380 17.679 0.6879
NM 001310478 6037 38.0969 33.4040 18.5870 27.5810 1.5469
NM 001102653 7068 48.6870 43.6400 25.8659 32.9810 1.1870
NM 002763 8178 65.7319 58.5820 34.5220 45.8090 1.4220
NR 133925 9096 80.4949 72.8770 41.7019 54.0269 1.7500
NG 029868 10355 101.7990 93.2639 53.5950 75.2279 2.1099
NG 013266 22093 488.1619 440.3600 246.3190 365.9060 9.2349
NG 011731 30767 941.9620 1100.0530 532.6480 1451.1100 19.2990
NG 008111 52255 2735.4070 3007.2460 1456.9200 3413.6280 64.4760

Execution time is reduced as well. Experimental results confirm enhanced
performance when our algorithm is applied in contrast to others that process only one
DNA sequence. A major finding of this study is that the performance of comparative
algorithms relies upon both, length and number of patterns obtained from a sequence,
while our algorithm does not, regardless of the number of patterns. According to the
experiments performance, it can be established that the proposed algorithm is faster
than compared algorithms. Furthermore, frequent pattern studies can be enhanced by
using this proposed method.

References
1. Aggarwal, C.C.: Data mining: The Textbook. Springer International Publishing, vol. 1, pp.

1–734 (2015). DOI: 10.1007/978-3-319-14142-8.
2. Aggarwal, C.C., Han, J.: Frequent Pattern Mining, Springer Cham (2014). DOI:

10.1007/978-3-319-07821-2 1.
3. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases.

In: Proceedings of the 20th International Conference on Very Large Data Bases, vol. 1215,
pp. 487–499 (1994)

4. Azmi, A.M., Al-Ssulami, A.M.: Discovering Common Recurrent Patterns in Multiple
Stringsover Large Alphabets. Pattern Recognition Letters, vol. 54, pp. 75–81 (2015). DOI:
10.1016/j.patrec.2014.12.009.

5. Beernaerts, J., Debever, E., Lenoir, M., Baets, B.D., de-Weghe, N.V.: A Method Based on the
Levenshtein Distance Metric for the Comparison of Multiple Movement Patterns Described
by Matrix Sequences of Different Length. Expert Systems with Applications, vol. 115, pp.
373–385 (2019). DOI: 10.1016/j.eswa.2018.07.076.

6. Bustio-Martı́nez, L., Muñoz-Briseño, A., Cumplido, R., Hernández-León, R.,
Feregrino-Uribe, C.: A Novel Multi-Core Algorithm for Frequent Itemsets Mining
in Data Streams. Pattern Recognition Letters, vol. 125, pp. 241–248 (2019). DOI:
10.1016/j.patrec.2019.05.003.

7. Chanda, A.K., Ahmed, C.F., Samiullah, M., Leung, C.K.: A New Framework for Mining
Weighted Periodic Patterns in Time Series Databases. Expert Systems with Applications,
vol. 79, pp. 207–224 (2017). DOI: 10.1016/j.eswa.2017.02.028.

52

Luis Heriberto García-Islas, Anilu Franco-Arcega, et al.

Research in Computing Science 151(10), 2022 ISSN 1870-4069



8. Danger, R., Pla, F., Molina, A., Rosso, P.: Towards a Protein–Protein Interaction Information
Extraction System: Recognizing Named Entities. Knowledge-Based Systems, vol. 57, pp.
104–118 (2014). DOI: 10.1016/j.knosys.2013.12.010.

9. Devikarubi, R., Rubi, R.D., Arockiam, L.: IndexedFCP - An Index Based Approach to
Identify Frequent Contiguous Patterns (FCP) in Big Data. In: International Conference on
Intelligent Computing Applications, pp. 27–31 (2014). DOI: 10.1109/ICICA.2014.15.

10. Gureja, V., Sharma, N., Sharma, A.: An Optimized Tabular Structure Based Pattern
Search Over DNA String. In: International Conference on Soft Computing Techniques and
Implementations, pp. 72–76 (2015). DOI: 10.1109/ICSCTI.2015.7489540.

11. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, (1997). DOI:
10.1017/CBO9780511574931.

12. Kieu, T., Vo, B., Le, T., Deng, Z.H., Le, B.: Mining Top-k Co-Occurrence Items with
Sequential Pattern. Expert Systems with Applications, vol. 85, pp. 123–133 (2017). DOI:
10.1016/j.eswa.2017.05.021.

13. Maestre-Vidal, J., Sotelo-Monge, M.A., Garcı́a-Villalba, L.J.: A Novel Pattern
Recognition System for Detecting Android Malware by Analyzing Suspicious
Boot Sequences. Knowledge-Based Systems, vol. 150, pp. 198–217 (2018). DOI:
10.1016/j.knosys.2018.03.018.

14. Mao, G.: An Efficient Mining Algorithm for Key Segment from DNA Sequences. In: 28th
Canadian Conference on Electrical and Computer Engineering, pp. 396–399 (2015). DOI:
10.1109/CCECE.2015.7129310.

15. Mutakabbir, K.M., Mahin, S.S., Hasan, M.A.: Mining Frequent Pattern Within a
Genetic Sequence Using Unique Pattern Indexing and Mapping Techniques. In:
International Conference on Informatics, Electronics and Vision, pp. 1–5 (2014). DOI:
10.1109/ICIEV.2014.6850729.

16. National Center of Biotechnology Information: Home / nucleotide / NCBI (2018)
17. Snustad, D., Simmons, M.: Principles of Genetics. Wiley (2015)
18. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson

Addison-Wesley (2005)
19. Tastan-Bishop, O.: Bioinformatics and Data Analysis in Microbiology. Caister Academic

Press (2014)
20. Tozammel-Hossain, K.S., Patnaik, D., Laxman, S., Jain, P., Bailey-Kellogg, C.,

Ramakrishnan, N.: Improved Multiple Sequence Alignments Using Coupled Pattern Mining.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 10, no. 5, pp.
1098–1112 (2013). DOI: 10.1109/TCBB.2013.36.

21. Wang, Q., Davis, D.N., Ren, J.: Mining Frequent Biological Sequences Based on Bitmap
Without Candidate Sequence Generation. Computers in Biology and Medicine, vol. 69, pp.
152–157 (2016). DOI: 10.1016/j.compbiomed.2015.12.016.

22. Zhang, J., Wang, Y., Zhang, C., Shi, Y.: Mining Contiguous Sequential Generators
in Biological Sequences. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 13, no. 5, pp. 855–867 (2016). DOI: 10.1109/TCBB.2015.2495132.

53

Sequential Frequent Patterns for a DNA Sequence Using Mapping and Mining Techniques

Research in Computing Science 151(10), 2022ISSN 1870-4069


